Monte Carlo implementation of supercoiled double-stranded DNA.
نویسندگان
چکیده
Metropolis Monte Carlo simulation is used to investigate the elasticity of torsionally stressed double-stranded DNA, in which twist and supercoiling are incorporated as a natural result of base-stacking interaction and backbone bending constrained by hydrogen bonds formed between DNA complementary nucleotide bases. Three evident regimes are found in extension versus torsion and force versus extension plots: a low-force regime in which over- and underwound molecules behave similarly under stretching; an intermediate-force regime in which chirality appears for negatively and positively supercoiled DNA and extension of underwound molecule is insensitive to the supercoiling degree of the polymer; and a large-force regime in which plectonemic DNA is fully converted to extended DNA and supercoiled DNA behaves quite like a torsionless molecule. The striking coincidence between theoretic calculations and recent experimental measurement of torsionally stretched DNA (Strick et al., Science. 271:1835, 1996; Biophys. J. 74:2016, 1998) strongly suggests that the interplay between base-stacking interaction and permanent hydrogen-bond constraint takes an important role in understanding the novel properties of elasticity of supercoiled DNA polymer.
منابع مشابه
Pokeweed antiviral protein cleaves double-stranded supercoiled DNA using the same active site required to depurinate rRNA.
Ribosome-inactivating proteins (RIPs) are N-glycosylases that remove a specific adenine from the sarcin/ricin loop of the large rRNA in a manner analogous to N-glycosylases that are involved in DNA repair. Some RIPs have been reported to remove adenines from single-stranded DNA and cleave double-stranded supercoiled DNA. The molecular basis for the activity of RIPs on double-stranded DNA is not...
متن کاملNew approach to Monte Carlo calculation of buckling of supercoiled DNA loops
The short supercoiled circular DNA molecules are shown to be glassy systems and canonical Metropolis Monte Carlo simulations of the systems tend to get stuck in local metastable energy basins. A novel Monte Carlo algorithm is developed to alleviate the problem of “ergodicity breaking” of the glassy systems, in which the Markov process is driven by an explicitly analytic weight factor with enhan...
متن کاملEffect of sequence-dependent rigidity on plectoneme localization in dsDNA.
We use Monte-Carlo simulations to study the effect of variable rigidity on plectoneme formation and localization in supercoiled double-stranded DNA. We show that the presence of soft sequences increases the number of plectoneme branches and that the edges of the branches tend to be localized at these sequences. We propose an experimental approach to test our results in vitro, and discuss the po...
متن کاملApproach to Monte Carlo calculation of the buckling of supercoiled DNA loops.
The short supercoiled circular DNA molecules are shown to be glassy systems and canonical Metropolis Monte Carlo simulations of the systems tend to get stuck in local metastable energy basins. A Monte Carlo algorithm is developed to alleviate the problem of "ergodicity breaking" of the glassy systems, in which the Markov process is driven by an explicitly analytic weight factor with enhanced pr...
متن کاملModeling Bacterial DNA: Simulation of Self-Avoiding Supercoiled Worm-Like Chains Including Structural Transitions of the Helix.
Under supercoiling constraints, naked DNA, such as a large part of bacterial DNA, folds into braided structures called plectonemes. The double-helix can also undergo local structural transitions, leading to the formation of denaturation bubbles and other alternative structures. Various polymer models have been developed to capture these properties, with Monte-Carlo (MC) approaches dedicated to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 78 4 شماره
صفحات -
تاریخ انتشار 2000